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Oxidation products of 2-acyl-4,5-dihydrofurans
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Abstract—2-Benzoyl-4,5-dihydrofuran (5) readily undergoes oxidation in air, during chromatography on silica, or following expo-
sure to oxidising agents (MCPBA, DMDO), to give 2-benzoylbutyrolactone (6) and tricycle 7 as the major products.
� 2006 Elsevier Ltd. All rights reserved.
As part of a project to develop enantiospecific routes to
pyrrolizidine alkaloids, we had occasion to study the
Stille cross-coupling of 2-(tributylstannyl)dihydrofuran
11 and the aspartate-derived acid chloride 2.2 Under
the standard conditions,3 this reaction proceeded
smoothly to give 2-acyldihydrofuran 3 in admixture
with Bu3SnCl (Scheme 1). We noticed decomposition
and a low mass recovery following attempted chromato-
graphic purification and therefore assayed some of the
well-known procedures for removal of tin residues from
reaction mixtures: (1) partitioning between petrol and
acetonitrile4 gave only a partial separation; (2) stirring
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a petrol/ethyl acetate solution with NaOH and filtration
through silica 5 gave no recovery of coupled product; (3)
stirring with aq KF and filtration6 to remove precipi-
tated polymeric Bu3SnF resulted in an inseparable
mixture of products; (4) column chromatography on
KF-impregnated silica7 succeeded in producing tin-free
product but only in trace quantities.

In an attempt to identify reliable conditions for producing
this type of compound in a pure form, free of tin residues,
we focused on the synthesis and purification of a simple
model (5, Scheme 2) rather than waste further acid
es.
-mail: jeremy.robertson@chem.ox.ac.uk
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chloride 2. The choice of benzoyl as the acyl substituent
was based on the expectation that this would impart
non-volatility to the sample. Interestingly, benzoyl-
dihydrofuran 5, prepared analogously to compound 3,
was found to be converted, either during chromatogra-
phy, or on stirring with silica in ethyl acetate for 7 h, into
two major products, 6 and 7 (83% combined yield), in
addition to a very minor component that has so far not
been isolated and identified. Whilst butyrolactone 68

was readily identified following routine spectroscopic
analysis (e.g., mmax/cm�1 1769s, 1682s), the identity of
the tricyclic bisacetal 7 was less obvious; fortunately,
the compound crystallised out of ethyl acetate and the
structure was solved by X-ray crystallography (Fig. 1).9

A survey of the literature revealed no suggestions of a
particular instability of 2-acyldihydrofurans10 and, in a
Figure 1. (Upper): ORTEP view of tricycle 7; (lower): rotated view
highlighting the step-like ring system (phenyl groups omitted for
clarity).9
separate study,11 we had prepared 2-formyl-4,5-
dihydrofuran12 without complication. Therefore, in
order to confirm that this reactivity was not an artefact
induced by residual reagents from the cross-coupling
reaction, substrate 5 was prepared directly from 2-lithio-
dihydrofuran according to Meyers’ method.13 Once
more, the product was initially obtained reasonably
cleanly but was found to evolve into the two major
products 6 and 7 as before.

Clearly, these results reflect an inherent propensity for
2-benzoyldihydrofuran (5) to undergo aerial oxidation.
The same behaviour could be induced deliberately by
exposing dihydrofuran 5 to either MCPBA (CH2Cl2,
0! 20 �C, 1 h) or DMDO (acetone, 0! 20 �C, 1 h).
On this basis, it is reasonable to propose that the enol
ether double bond is epoxidised14 (!8, Scheme 3), that
the epoxide then has a tendency to ring-open (!9 or a
protonated analogue) to place a partial positive charge
remote from the acyl group, and that benzoyl group
migration15 completes the formation of butyrolactone
6 in a formal dyotropic rearrangement16 (i.e., 8!6). In
this scenario, tricycle 7 would arise by the trapping of
polarised intermediate 9 by the starting dihydrofuran (5).

2-Acetyldihydrofuran17 also proved to be unstable
towards chromatography on silica, and 2-acetylbutyro-
lactone was observed in the product mixture; however,
this compound showed a reduced tendency towards
air-oxidation and chromatography using deactivated
silica (triethylamine) was sufficient to obtain pure prod-
uct. 2-Benzoyl-4,5-dihydro-6H-pyran (10)13 showed no
tendency to undergo such oxidation and rearrangement;
treatment of the latter with DMDO resulted in diol 11
after chromatography (Scheme 4).

In summary, 2-benzoyldihydrofuran (5) exhibits a previ-
ously unrecognised proclivity towards oxidation to give
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rearranged and dimeric products (6 and 7, respectively).
Although we have not yet studied other 2-aroyl-
dihydrofurans we expect that a similar reactivity pattern
will be observed. This reactivity does not extend to the
dihydropyran analogue 10 nor to the simple 2-alka-
noyldihydrofurans, such as 2-formyl- and 2-acetyl-
dihydrofuran, which show merely the expected
instability towards acidic conditions.
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